Targeted MS Measurement of Proteins in Epigenetics

HomeResearch TopicsTargeted DiscoveryTargeted MS Measurement of Proteins in Epigenetics
Targeted MS Measurement of Proteins in Epigenetics 2016-11-10T20:27:01+00:00

Notable peer-reviewed articles–MS-based proteomics for chromatin biology and characterization of histone PTMs to advance understanding of epigenetic processes.


Articles of note

Characterization of drug-evoked senescence of HCA2 fibroblasts

Characterization of drug-evoked senescence of HCA2 fibroblasts

Depletion of nuclear histone H2A variants is associated with chronic DNA damage signaling upon drug-evoked senescence of human somatic cells

Cellular senescence is associated with global chromatin changes, altered gene expression, and activation of chronic DNA damage signaling. These events ultimately lead to morphological and physiological transformations in primary cells. In this study, we show that chronic DNA damage signals caused by genotoxic stress impact the expression of histones H2A family members and lead to their depletion in the nuclei of senescent human fibroblasts. Our data reinforce the hypothesis that progressive chromatin destabilization may lead to the loss of epigenetic information and impaired cellular function associated with chronic DNA damage upon drug-evoked senescence. We propose that changes in the histone biosynthesis and chromatin assembly may directly contribute to cellular aging. In addition, we also outline the method that allows for quantitative and unbiased measurement of these changes. Read more ›

H3K27 and H3K36 methylation alterations drive the identification of unique molecular chromatin signatures.Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia

Epigenetic dysregulation is an emerging hallmark of cancers. We developed a high-information-content mass spectrometry approach to profile global histone modifications in human cancers. When applied to 115 lines from the Cancer Cell Line Encyclopedia, this approach identified distinct molecular chromatin signatures. One signature was characterized by increased histone 3 lysine 36 (H3K36) dimethylation, exhibited by several lines harboring translocations in NSD2, which encodes a methyltransferase. A previously unknown NSD2 p.Glu1099Lys (p.E1099K) variant was identified in nontranslocated acute lymphoblastic leukemia (ALL) cell lines sharing this signature. Read more ›

Targeted proteomics for quantification of histone acetylation in Alzheimer’s disease

The epigenetic remodeling of chromatin histone proteins by acetylation has been the subject of recent investigations searching for biomarkers indicative of late onset cognitive loss. Histone acetylations affect the regulation of gene transcription, and the loss of learning induced deacetylation at specific histone sites may represent biomarkers for memory loss and Alzheimer’s disease (AD). Selected-reaction-monitoring (SRM) has recently been advanced to quantitate peptides and proteins in complex biological systems. In this paper, we provide evidence that SRM-based targeted proteomics can reliably quantify specific histone acetylations in both AD and control brain by identifying the patterns of H3 K18/K23 acetylations Results of targeted proteomics assays have been validated by Western blot (WB) analysis. Read more ›

PMA treatment and differential protein expression

PMA treatment and differential protein expression

Mass spectrometric studies on epigenetic interaction networks in cell differentiation (free full text)

Arrest of cell differentiation is one of the leading causes of leukemia and other cancers. Induction of cell differentiation using pharmaceutical agents has been clinically attempted for the treatment of these cancers. Epigenetic regulation may be one of the underlying molecular mechanisms controlling cell proliferation or differentiation. Here, we report on the use of proteomics-based differential protein expression analysis in conjunction with quantification of histone modifications to decipher the interconnections among epigenetic modifications, their modifying enzymes or mediators, and changes in the associated pathways/networks that occur during cell differentiation. Read more ›

Proteomics in chromatinProteomics in chromatin biology and epigenetics: Elucidation of post-translational modifications of histone proteins by mass spectrometry

Histone proteins contribute to the maintenance and regulation of the dynamic chromatin structure, to gene activation, DNA repair and many other processes in the cell nucleus. Site-specific reversible and irreversible post-translational modifications of histone proteins mediate biological functions, including recruitment of transcription factors to specific DNA regions, assembly of epigenetic reader/writer/eraser complexes onto DNA, and modulation of DNA-protein interactions. Histones thereby regulate chromatin structure and function, propagate inheritance and provide memory functions in the cell. Read more ›

Schematic of the general procedure for 15N metabolic labelingQuantification of histone modifications using 15N metabolic labeling

Mass spectrometry has made major contributions to recent discoveries in the field of epigenetics, particularly in the characterization of the myriad post-translational modifications (PTMs) of histones which are technically challenging to analyze. These new developments have further aroused great interest in development of robust, new mass spectrometric methods to quantitatively study the dynamics of histone modifications. This review covers quantitative analysis of histone PTMs and discuss an ¹⁵N metabolic labeling procedure for quantifying histone PTMs applied to the analysis of methyltransferase knockouts in the model organism, Tetrahymena thermophila. Read more ›

Quantitative proteomics for epigenetics

Mass spectrometry has made many contributions to the chromatin field through the mapping of histone modifications and the identification of protein complexes involved in gene regulation. MS-based proteomics has now evolved from the identification of single protein spots in gels to the identification and quantification of thousands of proteins in complex mixtures. Quantitative approaches also allow comparative and time-resolved analysis of post-translational modifications. An important emerging field is the unbiased interaction analysis of proteins with other proteins, defined protein modifications, specific DNA and RNA sequences, and small molecules. Quantitative proteomics can also accurately monitor whole proteome changes in response to perturbation of the gene expression machinery. We provide an up-to-date review of modern quantitative proteomic technology and its applications in the field of epigenetics. Read more ›

Stoichiometry of protein complexes revealed by label-free quantitative proteomics.Stoichiometry of chromatin-associated protein complexes revealed by label-free quantitative mass spectrometry-based proteomics (free full text)

Many cellular proteins assemble into macromolecular protein complexes. The identification of protein–protein interactions and quantification of their stoichiometry is therefore crucial to understand the molecular function of protein complexes. Determining the stoichiometry of protein complexes is usually achieved by mass spectrometry-based methods that rely on introducing stable isotope-labeled reference peptides into the sample of interest. However, these approaches are laborious and not suitable for high-throughput screenings. Read more ›